Polymers (Oct 2020)

Mold-Face Heating Mechanism, Overflow-Well Design, and Their Effect on Surface Weldline and Tensile Strength of Long-Glass-Fiber-Reinforced Polypropylene Injection Molding

  • Po-Wei Huang,
  • Hsin-Shu Peng,
  • Wei-Huang Choong

DOI
https://doi.org/10.3390/polym12112474
Journal volume & issue
Vol. 12, no. 11
p. 2474

Abstract

Read online

Long-fiber polymers offer the advantage of a lower production cost because specific tool designs are required for conventional injection molding equipment to produce long-fiber polymer parts. The use of long fibers allows relatively high fiber aspect ratios to be obtained, thereby enhancing composite stiffness, strength, creep endurance, and fatigue endurance. However, the multigate design of the injection-molded part can result in weldline formation during the molding process, which reduces the structural strength of the molded part. Therefore, in this study, the surface quality, fiber compatibility, and structural strength of long-glass-fiber-reinforced polypropylene (PP/LGF) injection-molded samples were compared in the use versus nonuse of a mold-cavity overflow-well area and the mold-face infrared heating method. The experimental results indicate that the mold-cavity overflow-well area more greatly improved the surface roughness of the PP/LGF molded samples. Moreover, the infrared heating of the mold-face decreased the weldline depth of the samples. Optical-microscopy images and mold-cavity pressure distributions indicated that the weldline tensile strength and the interface compatibility between fibers and melts at the weldline region during the molding stage were higher in the use than in the nonuse of the mold-cavity overflow-well and mold-face infrared heating method.

Keywords