International Journal of Aerospace Engineering (Jan 2024)
Synthesis and Networking of Spaceborne Deployable Prismatic Antenna Mechanisms Based on Graph Theory
Abstract
Spaceborne deployable cylindrical antennas have broad application prospects in the fields of space earth observation and remote-sensing detection because of their significant advantages of ultralong aperture, high gain, and flexible beam scanning. As application requirements rapidly develop, a new type of spaceborne deployable cylindrical antenna mechanism with a large diameter and deployability is urgently needed. This paper presents an innovative design for a cylindrical deployable antenna mechanism based on 18R triangular prism elements based on graph theory. The correctness of the configuration is verified by developing a prototype. First, four kinds of nonoverconstrained 12-bar triangular prism-stabilized truss structure configurations and their corresponding topological diagrams are constructed. Second, based on graph theory, three types of 102 triangular prism-stabilized truss mechanism configurations that can be folded into linear mechanisms are derived. Third, the kinematic pair configuration is established to achieve a single-degree-of-freedom 7R2U9S triangular prism deployable unit. Fourth, combined with the geometric topology characteristics of the unit network, a triangular prism unit networking method is proposed, and a cylindrical network mechanism configuration based on 18R triangular prism units is obtained. A prototype was fabricated by 3D printing, and an expansion and retraction function test was conducted, which verified the correctness of the theoretical analysis in this paper. Finally, a new concept configuration for a parabolic cylindrical antenna is proposed. This paper provides a reference for the configuration of large-scale folding truss structures with unit expansion.