PLoS ONE (Jan 2021)

Activation of GABA(A) receptors inhibits T cell proliferation.

  • Emma L Sparrow,
  • Sonya James,
  • Khiyam Hussain,
  • Stephen A Beers,
  • Mark S Cragg,
  • Yury D Bogdanov

DOI
https://doi.org/10.1371/journal.pone.0251632
Journal volume & issue
Vol. 16, no. 5
p. e0251632

Abstract

Read online

BackgroundThe major sites for fast synaptic inhibition in the central nervous system (CNS) are ion channels activated by γ-aminobutyric acid (GABA). These receptors are referred as GABA(A) receptors (GABA(A)R). Recent evidence indicates a role of GABA(A)R in modulating the immune response. This work aimed to discern the role of GABA and GABA(A)Rs in human and mouse T cell activity.MethodsMouse splenocytes or human peripheral blood mononuclear cells (PBMCs) were activated with anti-CD3 antibodies and the proliferation of both CD8+ and CD4+ T cells assessed through flow cytometry. Subsequently, the effects on T cell proliferation of either GABA(A)R modulation by diazepam that is also capable of activating mitochondrial based translocator protein (TSPO), alprazolam and allopregnanolone or inhibition by bicucculine methiodide (BMI) and (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) were assessed.ResultsPositive modulation of GABA(A)Rs either by benzodiazepines or the neurosteroid allopregnanolone inhibits both mouse and human T cell proliferation. GABAergic inhibition of T cell proliferation by benzodiazepines could be rescued by GABA(A)R blocking. Our data suggest that benzodiazepines influence T cell proliferation through both TSPO and GABA(A)Rs activation.ConclusionsWe conclude that activation of GABA(A)Rs provides immunosuppression by inhibiting T cell proliferation.