Beilstein Journal of Organic Chemistry (May 2014)

Novel indolin-2-one-substituted methanofullerenes bearing long n-alkyl chains: synthesis and application in bulk-heterojunction solar cells

  • Irina P. Romanova,
  • Andrei V. Bogdanov,
  • Inessa A. Izdelieva,
  • Vasily A. Trukhanov,
  • Gulnara R. Shaikhutdinova,
  • Dmitry G. Yakhvarov,
  • Shamil K. Latypov,
  • Vladimir F. Mironov,
  • Vladimir A. Dyakov,
  • Ilya V. Golovnin,
  • Dmitry Yu. Paraschuk,
  • Oleg G. Sinyashin

DOI
https://doi.org/10.3762/bjoc.10.111
Journal volume & issue
Vol. 10, no. 1
pp. 1121 – 1128

Abstract

Read online

An easy, high-yield and atom-economic procedure of a C60 fullerene modification using a reaction of fullerene C60 with N-alkylisatins in the presence of tris(diethylamino)phosphine to form novel long-chain alkylindolinone-substituted methanofullerenes (AIMs) is described. Optical absorption, electrochemical properties and solubility of AIMs were studied. Poly(3-hexylthiophene-2,5-diyl) (P3HT)/AIMs solar cells were fabricated and the effect of the AIM alkyl chain length and the P3HT:AIM ratio on the solar cell performance was studied. The power conversion efficiencies of about 2% were measured in the P3HT/AIM devices with 1:0.4 P3HT:AIM weight ratio for the AIMs with hexadecyl and dodecyl substituents. From the optical and AFM data, we suggested that the AIMs, in contrast to [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), do not disturb the P3HT crystalline domains. Moreover, the more soluble AIMs do not show a better miscibility with the P3HT crystalline phase.

Keywords