Mathematica Bohemica (Oct 2016)

Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

  • Amalendu Ghosh

DOI
https://doi.org/10.21136/MB.2016.0072-14
Journal volume & issue
Vol. 141, no. 3
pp. 315 – 325

Abstract

Read online

We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pmømega)$ with constant scalar curvature is either Einstein, or the dual field of $ømega$ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pmømega)$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $ømega$) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.

Keywords