PLoS ONE (Jan 2023)

Temporal dynamics of pro-inflammatory cytokines and serum corticosterone following acute sleep fragmentation in male mice.

  • Van Thuan Nguyen,
  • Cameron J Fields,
  • Noah T Ashley

DOI
https://doi.org/10.1371/journal.pone.0288889
Journal volume & issue
Vol. 18, no. 12
p. e0288889

Abstract

Read online

Obstructive sleep apnea is increasing worldwide, leading to disordered sleep patterns and inflammatory responses in brain and peripheral tissues that predispose individuals to chronic disease. Pro-inflammatory cytokines activate the inflammatory response and are normally regulated by glucocorticoids secreted from adrenal glands. However, the temporal dynamics of inflammatory responses and hypothalamic-pituitary-adrenal (HPA) axis activation in relation to acute sleep fragmentation (ASF) are undescribed. Male C57BL/6J mice were exposed to ASF or control conditions (no ASF) over specified intervals (1, 2, 6, or 24 h) and cytokine gene expression (IL-1β, TNF-α) in brain and peripheral tissues as well as serum glucocorticoid and interleukin-6 (IL-6) concentration were assessed. The HPA axis was rapidly activated, leading to elevated serum corticosterone from 1-24 h of ASF compared with controls. This activation was followed by elevated serum IL-6 concentration from 6-24 h of ASF. The tissue to first exhibit increased pro-inflammatory gene expression from ASF was heart (1 h of ASF). In contrast, pro-inflammatory gene expression was suppressed in hypothalamus from 1 h of ASF, but elevated at 6 h. Because the HPA axis was activated throughout ASF, this suggests that brain, but not peripheral, pro-inflammatory responses were rapidly inhibited by glucocorticoid immunosuppression.