Plant, Soil and Environment (Jun 2021)
Different biological strategies for the bioremediation of naturally polluted soils
Abstract
Finding an appropriate method with the highest rate of polycyclic aromatic hydrocarbon (PAH) removal from naturally polluted soils is an important research issue. A pot factorial experiment (using contaminated soil samples from the Isfahan Refinery, Iran) was conducted in a 90-day period to compare the following bioremediation strategies: (1) natural attenuation (NA): the inherent ability of soil for bioremediation; (2) bioaugmentation (BA): inoculating soil with PAH degrading microbes Marinobacter hydrocarbonoclasticus; (3) biostimulation (BS): using N, P and K nutrients for the stimulation of bioremediating soil bacteria to achieve the C:N:P ratio of 100:10:1, and(4) bioaugmentation + biostimulation (BS + BA). Treatments NA (22.8%) and BA + BS (63.9%) resulted in the least and the highest rate of PAH removal from the soil. The 2-4 ring compounds had a significantly (P ≤ 0.05) higher rate of degradation than the 5-6 ring compounds. The highest rates were resulted by fluorene (76.41%) and acenaphthylene (72.28%) using the BA + BS treatment. However, the lowest degradation rates were resulted by indeno (1,2,3-cd) pyrene (10.05%), benzo [b] fluoranthene (10.17%), benzo (g, h, i) perylene (12.53%), and benzo [k] fluoranthene (13.67%), using NA treatment. The BA + BS treatments are the most effective method for the bioremediation of PAH polluted soils.
Keywords