Crops (Jul 2024)

Genotypic Variability in Response to Heat Stress and Post-Stress Compensatory Growth in Mungbean Plants (<i>Vigna radiata</i> [L.] Wilczek)

  • Vijaya Singh,
  • Marisa Collins

DOI
https://doi.org/10.3390/crops4030020
Journal volume & issue
Vol. 4, no. 3
pp. 270 – 287

Abstract

Read online

Understanding genotypic variability in tolerance to heat stress during flowering, a critical growth stage, and post-stress recovery remains limited in mungbean (Vigna radiata) genotypes. This study investigates the genetic variability in in vitro pollen viability, seed set, and grain yield among mungbean genotypes in response to transient high temperatures. Thirteen genotypes were evaluated in a glasshouse study, and four in a field study, subjected to high temperatures (around 40 °C/22 °C day/night) imposed midday during flowering. Across all genotypes, the pollen viability percentage significantly decreased from 70% to 30%, accompanied by reductions in the pod size and seed number per pod, and increases in unfertilized pods and unviable seeds. However, the seed yield per plant significantly increased for four genotypes (M12036, Celera-II AU, Crystal, and M11238/AGG325961), attributed to elevated shoot growth and pod numbers under high-temperature treatment in the glasshouse study. Conversely, Satin II, which exhibited the highest stress tolerance index, recorded a greater seed yield under optimum conditions compared to high temperatures. Similar genotypic variability in post-heat-stress recovery and rapid growth was observed in the field study. Under non-limiting water conditions, mungbean genotypes with a relatively more indeterminate growth habit mitigated the heat stress’s impact on their pollen viability by swiftly increasing their post-stress vegetative and reproductive growth. The physiological mechanisms underlying post-stress rapid growth in these genotypes warrant further investigation and consideration in future breeding trials and mitigation strategies.

Keywords