Geofluids (Jan 2018)

The Migration of Coalbed Methane under Mining Pressure and Air Injection: A Case Study in China

  • Liqiang Zhang,
  • Yu Wu,
  • Hai Pu,
  • Xiaoping He,
  • Pan Li

DOI
https://doi.org/10.1155/2018/4034296
Journal volume & issue
Vol. 2018

Abstract

Read online

Gas outburst has always affected the safety of coal mining. To eliminate this risk by high-efficiency extraction of coalbed methane (CBM) in 4102 working face of number 3 coal seam in Hebi Number 3 coal mine, a model of CBM extraction in working face was established which was considering the mining impact of adjacent 4101 working face. In this model, the coupling relationships between stress, desorption, and migration of methane were analyzed. Moreover, we also studied the changes of methane pressure, plastic failure scope, and permeability of coal during the mining and then verified the results with the field data. And on this basis, a stimulation solution for methane extraction by injecting air into coal seam was presented, and the extraction effect was simulated. The simulation results show that the injection of air decreases the effective stress of coal which increases the permeability of coal and promotes the methane migration within the coal seam fractures. Besides, affected by the velocity of gas migration, the pressure drop between fractures and matrix will reduce with time while air injection can provide extra power for gas migration in fractures which causes the desorption and diffusion of methane in the matrix. So this stimulation solution can enhance the efficiency of gas extraction of coal seam and prevent gas outburst of the working face.