Applied Sciences (Jul 2021)

Genome Mining Associated with Analysis of Structure, Antioxidant Activity Reveals the Potential Production of Levan-Rich Exopolysaccharides by Food-Derived <i>Bacillus velezensis</i> VTX20

  • Thi Hanh Nguyen Vu,
  • Ngoc Tung Quach,
  • Ngoc Anh Nguyen,
  • Huyen Trang Nguyen,
  • Cao Cuong Ngo,
  • Tien Dat Nguyen,
  • Phu-Ha Ho,
  • Ha Hoang,
  • Hoang Ha Chu,
  • Quyet-Tien Phi

DOI
https://doi.org/10.3390/app11157055
Journal volume & issue
Vol. 11, no. 15
p. 7055

Abstract

Read online

Exopolysaccharides (EPSs) produced by Bacillus species have recently emerged as promising commercial antioxidants in various industries, such as pharmaceutics and biomedicine. However, little is known about EPS production and function from Bacillus velezensis so far. In the present study, the effect of sugar sources on EPS production by B. velezensis VTX20 and the genetic biosynthesis, characteristics, and antioxidant activity of the resulting EPS were evaluated. The strain VTX20 produced the maximum EPS yield of 75.5 ± 4.8 g/L from an initial 200 g/L of sucrose after a 48-h cultivation. Through genomic analysis, ls-levB operon was found, for the first time, to be responsible for the levan-type EPS production in B. velezensis. Biochemical and structural characterization further confirmed the majority of levan, followed by an extremely low level of dextran biopolymer. The water solubility index and water holding capacity of the EPSs were 81.9 ± 3.4% and 100.2 ± 3.4%, respectively. In vitro antioxidant activity analyses showed strong scavenging activity for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radical values of 40.1–64.0% and 16.0–40%, respectively. These findings shed light on the EPS biosynthesis of B. velezensis at both structural and genetic levels and the potential application of EPS as a natural antioxidant for pharmaceutical and biomedical industries.

Keywords