Future Journal of Pharmaceutical Sciences (Nov 2024)

Drug repurposing in the treatment of chronic inflammatory diseases

  • Shivmuni Sarup,
  • Alexander G. Obukhov,
  • Shubhi Raizada,
  • Rajat Atre,
  • Mirza S. Baig

DOI
https://doi.org/10.1186/s43094-024-00730-1
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Chronic inflammation is an increasing global healthcare challenge with limited effective treatment options. Developing medications for chronic diseases requires high financial investment and a long duration. Given these challenges, alternative strategies are needed. Here, we focus on one such strategy that holds great promise: drug repurposing, which involves identifying new therapeutic uses for existing drugs. Main body Here, we discuss the importance of two key transcription factors: nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), in orchestrating complex pathophysiological signaling networks involved in chronic inflammatory diseases. Dysregulation of the NF-κB and AP1 signaling pathways have been associated with various diseases, such as cancer, inflammatory disease, and autoimmune disorders. This review emphasized that repurposed small-molecule inhibitors of these pathways have proven successful as therapeutic interventions. These compounds exhibit high degrees of specificity and efficacy in modulating NF-κB or AP-1 signaling, making them appealing candidates for treating chronic inflammatory conditions. This review discusses the therapeutic potential and action mechanisms of several repurposed small-molecule inhibitors for combating diseases caused by abnormal activation or inhibition of NF-κB and AP-1. Conclusion This concise review highlights the potential of repurposing small-molecule inhibitors targeting the NF-κB and AP-1 pathways as effective therapies for various chronic inflammatory diseases. While further experimental validation is needed, drug repurposing offers a promising strategy to bypass the existing lengthy and expensive new drug development processes, providing a faster and more economical route to novel treatments.

Keywords