Discrete Dynamics in Nature and Society (Jan 2020)
New Method of Solving the Economic Complex Systems
Abstract
In this study, the authors first develop a direct method used to solve the linear nonhomogeneous time-invariant difference equation with the same number for inputs and outputs. Economic cybernetics is the crystallization for the integration of economics and cybernetics. It analyzes the stability, controllability, and observability of the economic system by establishing a system model and enables people to better understand the characteristics of the economic system and solve economic optimization problems. The economic model generally applies the discrete recurrence difference equation. The significant analytic approach for the difference equation is the z-transformation technique. The z-transformation state of the economic cybernetics state-space difference equation generally is a rational function with the same power for the numerator and the denominator. The proposed approach will take the place of the traditional methods without all annoying procedures involving the long division of some complicated polynomials, the expanded multiplication of many polynomial factors, the differentiation of some complicated polynomials, and the complex derivations of all partial fraction parameters. To highlight the novelty of this research, this study especially applies the proposed theorems originally belonging to engineering to the field of economic applications.