E3S Web of Conferences (Jan 2020)
Bleeding Detection in Gastrointestinal Images using Texture Classification and Local Binary Pattern Technique: A Review
Abstract
Texture analysis has proven to be a breakthrough in many applications of computer image analysis. It has been used for classification or segmentation of images which requires an effective description of image texture. Due to high discriminative power and simplicity of computation, the local binary pattern descriptors have been used for distinguishing different textures and in extracting texture and color in medical images. This paper discusses performance of various texture classification techniques using Contourlet Transform, Discrete Fourier Transform, Local Binary Patterns and Lacunarity analysis. The study reveals that the incorporation of efficient image segmentation, enhancement and texture classification using local binary pattern descriptor detects bleeding region in human intestines precisely.