Applied Sciences (Jun 2021)

CoNiZn and CoNiFe Nanoparticles: Synthesis, Physical Characterization, and In Vitro Cytotoxicity Evaluations

  • Sima Alikhanzadeh-Arani,
  • Mohammad Almasi-Kashi,
  • Saman Sargazi,
  • Abbas Rahdar,
  • Rabia Arshad,
  • Francesco Baino

DOI
https://doi.org/10.3390/app11125339
Journal volume & issue
Vol. 11, no. 12
p. 5339

Abstract

Read online

The polyol method has been used to synthesize CoNiFe and CoNiZn alloy nanoparticles (NPs). The magnetic characteristics of the products have been measured by vibration sample magnetometry (VSM) analysis. At the same time, the microstructure and morphology were inspected by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Magnetic measurement of samples by the VSM indicated that samples have soft ferromagnetic behavior. Spherical-shaped grains for samples were confirmed by the SEM. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) assays were used to determine the cytotoxic effects of the synthesized NPs. Cytotoxic evaluations showed that treatment with 25 to 400 µg/mL of CoNiZn and CoNiFe NPs exerted a significant time- and concentration-dependent toxicity in MCF7 and HUVEC cells and markedly enhanced the LDH leakage after 48 h of exposure (p < 0.05 compared with untreated cells). Furthermore, NPs with concentrations higher than 12.5 µg/mL induced evident morphological changes in the studied cell lines. Treatment with 12.5 µg/mL of CoNiZn and CoNiFe NPs was safe and did not affect normal human cell survival. The results of in vitro cytotoxicity assessments show promise in supporting the suitability of the synthesized NPs to build high-performance theranostic nanoplatforms for simultaneous cancer imaging and therapy without affecting normal human cells.

Keywords