IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2024)
Optimized Landing Site Selection at the Lunar South Pole: A Convolutional Neural Network Approach
Abstract
The identification of optimal landing sites is a critical first step for successful missions to the Moon and other extraterrestrial bodies, necessitating the integration of various environmental factors over large spatial scales. At the lunar south pole, site selection must balance engineering safety with areas of high scientific interest, requiring extensive analysis of potential locations. Although intelligent algorithms have been increasingly investigated for this purpose, the application of deep learning techniques in landing site selection remains unexplored. In this study, we employ one-dimensional convolutional neural networks (1D-CNNs) to quantitatively assess potential landing sites for exploration and lunar base construction, considering both scientific and engineering criteria. We also evaluate the influence of various factors on site selection using Shapley additive explanations (SHAP) values. The 1D-CNN model demonstrates robust performance across training, validation, and testing phases. Potential landing sites identified comprise less than 1% of the total study area, with factors such as visibility, volatile distribution, topography, and geological characteristics playing crucial roles. By applying operational constraints, we delineate sites suitable for direct landings and further refine this subset for base construction based on stringent requirements for resource utilization and energy sustainability. The combined use of CNN and SHAP enables more effective potential site screening and a deeper understanding of the factors influencing selection. Our findings offer a valuable framework for future lunar south pole expeditions, potentially minimizing manual survey efforts and enhancing the precision of landing site selection.
Keywords