PeerJ (May 2024)

Non-destructive prediction of anthocyanin concentration in whole eggplant peel using hyperspectral imaging

  • Zhiling Ma,
  • Changbin Wei,
  • Wenhui Wang,
  • Wenqiu Lin,
  • Heng Nie,
  • Zhe Duan,
  • Ke Liu,
  • Xi Ou Xiao

DOI
https://doi.org/10.7717/peerj.17379
Journal volume & issue
Vol. 12
p. e17379

Abstract

Read online Read online

Accurately detecting the anthocyanin content in eggplant peel is essential for effective eggplant breeding. The present study aims to present a method that combines hyperspectral imaging with advanced computational analysis to rapidly, non-destructively, and precisely measure anthocyanin content in eggplant fruit. For this purpose, hyperspectral images of the fruits of 20 varieties with diverse colors were collected, and the content of the anthocyanin were detected using high performance liquid chromatography (HPLC) methods. In order to minimize background noise in the hyperspectral images, five preprocessing algorithms were utilized on average reflectance spectra: standard normalized variate (SNV), autoscales (AUT), normalization (NOR), Savitzky–Golay convolutional smoothing (SG), and mean centering (MC). Additionally, the competitive adaptive reweighted sampling (CARS) method was employed to reduce the dimensionality of the high-dimensional hyperspectral data. In order to predict the cyanidin, petunidin, delphinidin, and total anthocyanin content of eggplant fruit, two models were constructed: partial least squares regression (PLSR) and least squares support vector machine (LS-SVM). The HPLC results showed that eggplant peel primarily contains three types of anthocyanins. Furthermore, there were significant differences in the average reflectance rates between 400–750 nm wavelength ranges for different colors of eggplant peel. The prediction model results indicated that the model based on NOR CARS LS-SVM achieved the best performance, with a squared coefficient of determination (R2) greater than 0.98, RMSEP and RMSEC less than 0.03 for cyanidin, petunidin, delphinidin, and total anthocyanin predication. These results suggest that hyperspectral imaging is a rapid and non-destructive technique for assessing the anthocyanin content of eggplant peel. This approach holds promise for facilitating the more effective eggplant breeding.

Keywords