Green Chemical Engineering (Mar 2021)

Improved hydrogen separation performance of asymmetric oxygen transport membranes by grooving in the porous support layer

  • Lili Cai,
  • Zhongwei Cao,
  • Xuefeng Zhu,
  • Weishen Yang

Journal volume & issue
Vol. 2, no. 1
pp. 96 – 103

Abstract

Read online

Hydrogen separation through oxygen transport membranes (OTMs) has attracted much attention. Asymmetric membranes with thin dense layers provide low bulk diffusion resistances and high overall hydrogen separation performances. However, the resistance in the porous support layer (PSL) limits the overall separation performance significantly. Engineering the structure of the PSL is an appropriate way to enable fast gas transport and increase the separation performance. There is no relevant research on studying the influence of the PSL on hydrogen separation performance so far. Herein, we prepared Ce0.85Sm0.15O1.925 – Sm0.6Sr0.4Cr0.3Fe0.7O3-δ (SDC-SSCF) asymmetric membranes with straight grooves in PSL by tape-casting and laser grooving. A ~30% improvement in the hydrogen separation rate was achieved by grooving in the PSLs. It indicates that the grooves may reduce the concentration polarization resistance in PSL for the hydrogen separation process. This work provides a straight evidence on optimizing the structures of PSL for improving the hydrogen separation performance of the membrane reactors.

Keywords