Stem Cell Research & Therapy (Mar 2024)

Human umbilical cord/placenta mesenchymal stem cell conditioned medium attenuates intestinal fibrosis in vivo and in vitro

  • Yoon Jeong Choi,
  • Woo Ram Kim,
  • Duk Hwan Kim,
  • Jee Hyun Kim,
  • Jun Hwan Yoo

DOI
https://doi.org/10.1186/s13287-024-03678-4
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background A significant unmet need in inflammatory bowel disease is the lack of anti-fibrotic agents targeting intestinal fibrosis. This study aimed to investigate the anti-fibrogenic properties and mechanisms of the conditioned medium (CM) from human umbilical cord/placenta-derived mesenchymal stem cells (UC/PL-MSC-CM) in a murine intestinal fibrosis model and human primary intestinal myofibroblasts (HIMFs). Methods UC/PL-MSC-CM was concentrated 15-fold using a 3 kDa cut-off filter. C57BL/6 mice aged 7 weeks old were randomly assigned to one of four groups: (1) control, (2) dextran sulfate sodium (DSS), (3) DSS + CM (late-phase treatment), and (4) DSS + CM (early-phase treatment). Chronic DSS colitis and intestinal fibrosis was induced by three cycles of DSS administration. One DSS cycle consisted of 7 days of oral DSS administration (1.75%, 2%, and 2.5% DSS), followed by 14 days of drinking water. UC/PL-MSC-CM was intraperitoneally administered in the late phase (from day 50, 10 times) or early phase (from day 29, 10 times) of DSS cycles. HIMFs were treated with TGF-β1 and co-treated with UC/PL-MSC-CM (10% of culture media) in the cellular model. Results In the animal study, UC/PL-MSC-CM reduced submucosa/muscularis propria thickness and collagen deposition, which improved intestinal fibrosis in chronic DSS colitis. The UC/PL-MSC-CM significantly reduced the expressions of procollagen1A1 and α-smooth muscle actin, which DSS significantly elevated. The anti-fibrogenic effect was more apparent in the UC-MSC-CM or early-phase treatment model. The UC/PL-MSC-CM reduced procollagen1A1, fibronectin, and α-smooth muscle actin expression in HIMFs in the cellular model. The UC/PL-MSC-CM downregulated fibrogenesis by suppressing RhoA, MRTF-A, and SRF expression. Conclusions Human UC/PL-MSC-CM inhibits TGF-β1-induced fibrogenic activation in HIMFs by blocking the Rho/MRTF/SRF pathway and chronic DSS colitis-induced intestinal fibrosis. Thus, it may be regarded as a novel candidate for stem cell-based therapy of intestinal fibrosis.

Keywords