Вестник Самарского университета: Аэрокосмическая техника, технологии и машиностроение (Apr 2022)
Model of virtual balancing of rigid rotors
Abstract
Rotor imbalances have a significant impact on the level of their vibration and reliability. Reduction of rotor imbalances is achieved through static and dynamic balancing that we propose to accomplish by virtual balancing of rigid rotors in two stages. At the first stage mutual orientation of the rotor parts is calculated to compensate their imbalances and couple unbalance. At the second stage the values of the masses and angular coordinates of two correction weights that allow eliminating the residual imbalance of the rotor are determined. The correction weights are placed in two balancing planes of the rotor. A model of virtual balancing is proposed to implement the balancing stages. The model makes it possible to determine the relative angular positions of the rotor parts, the values of the mass of two correction weights and their angular coordinates in the balancing planes. The effectiveness of using the proposed model was verified by performing calculations using the finite element model (FEM) of the rotor in the ANSYS software package. In the course of the study, data were obtained on the values of vibration velocities on the rotor supports. The results obtained show a significant reduction in the vibration velocities of the supports, amounting to 80% of their initial value.
Keywords