Scientific Reports (Oct 2024)
Cysteine protease I29 propeptide from Calotropis procera R. Br. As a potent cathepsin L inhibitor and its suppressive activity in breast cancer metastasis
Abstract
Abstract Breast cancer metastasis is associated with a poor prognosis and a high rate of mortality. Cathepsin L (CTSL) is a lysosomal cysteine protease that promotes tumor metastasis by degrading the extracellular matrix. Gene set enrichment analysis revealed that CTSL expression was higher in tumorous than in non-tumorous tissues of breast cancer patients and that high-level CTSL expression correlated positively with the epithelial-mesenchymal transition. Therefore, we hypothesized that inhibiting CTSL activity in tumor cells would prevent metastasis. In this study, we characterized the inhibitory activity of SnuCalCpI15, the I29 domain of a CTSL-like cysteine protease from Calotropis procera R. Br., and revealed that the propeptide stereoselectively inhibited CTSL in a reversible slow-binding manner, with an inhibitory constant (K i) value of 1.38 ± 0.71 nM, indicating its potency as an exogenous inhibitor in anti-cancer therapy. SnuCalCpI15 was localized intracellularly in MDA-MB-231 breast cancer cells and suppressed tumor cell migration and invasion. These results demonstrate the potential of SnuCalCpI15 as a novel agent to prevent breast cancer metastasis.
Keywords