Nature Communications (Nov 2024)

Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines

  • Kevin A. Kovalchik,
  • David J. Hamelin,
  • Peter Kubiniok,
  • Benoîte Bourdin,
  • Fatima Mostefai,
  • Raphaël Poujol,
  • Bastien Paré,
  • Shawn M. Simpson,
  • John Sidney,
  • Éric Bonneil,
  • Mathieu Courcelles,
  • Sunil Kumar Saini,
  • Mohammad Shahbazy,
  • Saketh Kapoor,
  • Vigneshwar Rajesh,
  • Maya Weitzen,
  • Jean-Christophe Grenier,
  • Bayrem Gharsallaoui,
  • Loïze Maréchal,
  • Zhaoguan Wu,
  • Christopher Savoie,
  • Alessandro Sette,
  • Pierre Thibault,
  • Isabelle Sirois,
  • Martin A. Smith,
  • Hélène Decaluwe,
  • Julie G. Hussin,
  • Mathieu Lavallée-Adam,
  • Etienne Caron

DOI
https://doi.org/10.1038/s41467-024-54734-9
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 22

Abstract

Read online

Abstract Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm—MHCvalidator—to enhance mass spectrometry-based immunopeptidomics sensitivity. MHCvalidator identifies unique T-cell epitopes presented by the B7 supertype, including an epitope from a + 1-frameshift in a truncated Spike antigen, supported by ribosome profiling. Analysis of 100,512 COVID-19 patient proteomes shows Spike antigen truncation in 0.85% of cases, revealing frameshifted viral antigens at the population level. Our EpiTrack pipeline tracks global mutations of MHCvalidator-identified CD8 + T-cell epitopes from the BNT162b4 vaccine. While most vaccine epitopes remain globally conserved, an immunodominant A*01-associated epitope mutates in Delta and Omicron variants. This work highlights SARS-CoV-2 antigenic features and emphasizes the importance of continuous adaptation in T-cell vaccine development.