Neurobiology of Disease (Jul 2021)

Expression of transduced nucleolin promotes the clearance of accumulated α-synuclein in rodent cells and animal model

  • Dong Hwan Ho,
  • Daleum Nam,
  • Soyeon Jeong,
  • Mi Kyoung Seo,
  • Sung Woo Park,
  • Wongi Seol,
  • Ilhong Son

Journal volume & issue
Vol. 154
p. 105349

Abstract

Read online

Alpha-synuclein (αSyn) is a major component of Lewy bodies, which are a known pathogenic marker of Parkinson's disease (PD). The dysfunction of protein degradation machinery causes αSyn accumulation. The reinforcement of αSyn degradation is a potential therapeutic target for PD because accumulated αSyn is responsible for the pathogenesis of PD. Nucleolin (NCL) is essential in the formation of the nucleolar structure. The function of NCL is correlated with oxidative stress-mediated cell death. A previous study demonstrated that NCL overexpression alleviated rotenone-induced neurotoxic effects, whereas knockdown of NCL had the opposite effect. These results suggest that NCL malfunction would exacerbate PD pathology. Thus, it was hypothesized that the introduction of ectopic NCL could rescue α-synucleinopathy in PD. This study investigated whether the ectopic expression of NCL facilitates αSyn clearance. Ectopic expression of NCL was accomplished via the transfection of green fluorescent protein (GFP) or GFP-NCL in mouse embryonic fibroblasts (MEF) or transduction of GFP or GFP-NCL using lentivirus in rat primary cortical neurons and mouse substantia nigra. NCL overexpression enhanced the clearance of accumulated or aggregated αSyn in MEFs and rat primary cortical neurons. The activity of the autophagy-lysosome pathway was enhanced by NCL expression. NCL transduction in the substantia nigra, which was co-injected with αSyn fibrils, rescued PD manifestation. The elevation of NCL levels may reflect a therapeutic strategy for α-synucleinopathy in PD.

Keywords