Environmental Science and Ecotechnology (Jul 2024)

Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes

  • Zhiguang Qiu,
  • Yuanyuan Zhu,
  • Qing Zhang,
  • Xuejiao Qiao,
  • Rong Mu,
  • Zheng Xu,
  • Yan Yan,
  • Fan Wang,
  • Tong Zhang,
  • Wei-Qin Zhuang,
  • Ke Yu

Journal volume & issue
Vol. 20
p. 100359

Abstract

Read online

Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.

Keywords