Boundary Value Problems (Jul 2019)
The numerical solution of forward and inverse Robin problems for Laplace’s equation
Abstract
Abstract The Robin boundary value problem for Laplace’s equation in the elliptic region (which is a forward problem) and its related inverse problem can be used to reconstruct Robin coefficients from measurements on a partial boundary (inverse problem). We present a numerical solution of the forward problem that uses a boundary integral equation method, and we propose a fast solver based on one that reduces the computational complexity to O(Nlog(N)) $\mathcal{O}(N\log (N))$, where N is the size of the data. We compute the solution of the inverse problem using a preconditioned Krylov subspace method where the preconditioner is based on a block matrix decomposition. The structure of the matrix is then exploited to solve the direct problem. Numerical examples are presented to illustrate the effectiveness of the proposed approach.
Keywords