Electronic Journal of Graph Theory and Applications (Apr 2021)

On two Laplacian matrices for skew gain graphs

  • Roshni T. Roy,
  • Shahul Hameed K.,
  • Germina K.A.

DOI
https://doi.org/10.5614/ejgta.2021.9.1.12
Journal volume & issue
Vol. 9, no. 1
pp. 125 – 135

Abstract

Read online

Gain graphs are graphs where the edges are given some orientation and labeled with the elements (called gains) from a group so that gains are inverted when we reverse the direction of the edges. Generalizing the notion of gain graphs, skew gain graphs have the property that the gain of a reversed edge is the image of edge gain under an anti-involution. In this paper, we study two different types, Laplacian and g-Laplacian matrices for a skew gain graph where the skew gains are taken from the multiplicative group Fx of a field F of characteristic zero. Defining incidence matrix, we also prove the matrix tree theorem for skew gain graphs in the case of the g-Laplacian matrix.

Keywords