Brain Sciences (May 2024)
An In Vivo and In Silico Approach Reveals Possible Sodium Channel Nav1.2 Inhibitors from <i>Ficus religiosa</i> as a Novel Treatment for Epilepsy
Abstract
Epilepsy is a neurological disease that affects approximately 50 million people worldwide. Despite an existing abundance of antiepileptic drugs, lifelong disease treatment is often required but could be improved with alternative drugs that have fewer side effects. Given that epileptic seizures stem from abnormal neuronal discharges predominately modulated by the human sodium channel Nav1.2, the quest for novel and potent Nav1.2 blockers holds promise for epilepsy management. Herein, an in vivo approach was used to detect new antiepileptic compounds using the maximum electroshock test on mice. Pre-treatment of mice with extracts from the Ficus religiosa plant ameliorated the tonic hind limb extensor phase of induced convulsions. Subsequently, an in silico approach identified potential Nav1.2 blocking compounds from F. religiosa using a combination of computational techniques, including molecular docking, prime molecular mechanics/generalized Born surface area (MM/GBSA) analysis, and molecular dynamics (MD) simulation studies. The molecular docking and MM/GBSA analysis indicated that out of 82 compounds known to be present in F. religiosa, seven exhibited relatively strong binding affinities to Nav1.2 that ranged from −6.555 to −13.476 kcal/mol; similar or with higher affinity than phenytoin (−6.660 kcal/mol), a known Na+-channel blocking antiepileptic drug. Furthermore, MD simulations revealed that two compounds: 6-C-glucosyl-8-C-arabinosyl apigenin and pelargonidin-3-rhamnoside could form stable complexes with Nav1.2 at 300 K, indicating their potential as lead antiepileptic agents. In summary, the combination of in vivo and in silico approaches supports the potential of F. religiosa phytochemicals as natural antiepileptic therapeutic agents.
Keywords