Computational and Structural Biotechnology Journal (Jan 2021)

covNorm: An R package for coverage based normalization of Hi-C and capture Hi-C data

  • Kyukwang Kim,
  • Inkyung Jung

Journal volume & issue
Vol. 19
pp. 3149 – 3159

Abstract

Read online

Hi-C and capture Hi-C have greatly advanced our understanding of the principles of higher-order chromatin structure. In line with the evolution of the Hi-C protocols, there is a demand for an advanced computational method that can be applied to the various forms of Hi-C protocols and effectively remove innate biases. To resolve this issue, we developed an implicit normalization method named “covNorm” and implemented it as an R package. The proposed method can perform a complete procedure of data processing for Hi-C and its variants. Starting from the negative binomial model-based normalization for DNA fragment coverages, removal of genomic distance-dependent background and calling of the significant interactions can be applied sequentially. The performance evaluation of covNorm showed enhanced or similar reproducibility in terms of HiC-spector score, correlation of compartment A/B profiles, and detection of reproducible significant long-range chromatin contacts compared to baseline methods in the benchmark datasets. The developed method is powerful in terms of effective normalization of Hi-C and capture Hi-C data, detection of long-range chromatin contacts, and readily extendibility to the other derivative Hi-C protocols. The covNorm R package is freely available at GitHub: https://github.com/kaistcbfg/covNormRpkg.

Keywords