PLoS ONE (Jan 2014)

Fine-scale distribution and spatial variability of benthic invertebrate larvae in an open coastal embayment in Nova Scotia, Canada.

  • Rémi M Daigle,
  • Anna Metaxas,
  • Brad deYoung

DOI
https://doi.org/10.1371/journal.pone.0106178
Journal volume & issue
Vol. 9, no. 8
p. e106178

Abstract

Read online

This study quantified the fine- scale (0.5 km) of variability in the horizontal distributions of benthic invertebrate larvae and related this variability to that in physical and biological variables, such as density, temperature, salinity, fluorescence and current velocity. Larvae were sampled in contiguous 500-m transects along two perpendicular 10-km transects with a 200-µm plankton ring net (0.75-m diameter) in St. George's Bay, Nova Scotia, Canada, in Aug 2009. Temperature, conductivity, pressure and fluorescence were measured with a CTD cast at each station, and currents were measured with an Acoustic Doppler Current Profiler moored at the intersection of the 2 transects. Gastropod, bivalve and, to a lesser extent, bryozoan larvae had very similar spatial distributions, but the distribution of decapod larvae had a different pattern. These findings suggest that taxonomic groups with functionally similar larvae have similar dispersive properties such as distribution and spatial variability, while the opposite is true for groups with functionally dissimilar larvae. The spatial variability in larval distributions was anisotropic and matched the temporal/spatial variability in the current velocity. We postulate that in a system with no strong oceanographic features, the scale of spatially coherent physical forcing (e.g. tidal periodicity) can regulate the formation or maintenance of larval patches; however, swimming ability may modulate it.