Nature Communications (Mar 2022)

Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts

  • Lauren Schiff,
  • Bianca Migliori,
  • Ye Chen,
  • Deidre Carter,
  • Caitlyn Bonilla,
  • Jenna Hall,
  • Minjie Fan,
  • Edmund Tam,
  • Sara Ahadi,
  • Brodie Fischbacher,
  • Anton Geraschenko,
  • Christopher J. Hunter,
  • Subhashini Venugopalan,
  • Sean DesMarteau,
  • Arunachalam Narayanaswamy,
  • Selwyn Jacob,
  • Zan Armstrong,
  • Peter Ferrarotto,
  • Brian Williams,
  • Geoff Buckley-Herd,
  • Jon Hazard,
  • Jordan Goldberg,
  • Marc Coram,
  • Reid Otto,
  • Edward A. Baltz,
  • Laura Andres-Martin,
  • Orion Pritchard,
  • Alyssa Duren-Lubanski,
  • Ameya Daigavane,
  • Kathryn Reggio,
  • NYSCF Global Stem Cell Array® Team,
  • Phillip C. Nelson,
  • Michael Frumkin,
  • Susan L. Solomon,
  • Lauren Bauer,
  • Raeka S. Aiyar,
  • Elizabeth Schwarzbach,
  • Scott A. Noggle,
  • Frederick J. Monsma,
  • Daniel Paull,
  • Marc Berndl,
  • Samuel J. Yang,
  • Bjarki Johannesson

DOI
https://doi.org/10.1038/s41467-022-28423-4
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

By coupling robotic cell culture systems with artificial intelligence–powered image analysis, Schiff et al. identify previously unseen characteristics of Parkinson’s disease in patient skin cells that distinguish them from healthy controls.