Underground Space (Aug 2024)
Influence of cutterhead opening ratio on soil arching effect and face stability during tunnelling through non-uniform soils
Abstract
Tunnelling has increasingly become an essential tool in the exploration of underground space. A typical construction problem is the face instability during tunnelling, posing a great threat to associated infrastructures. Tunnel face instability often occurs with the soil arching collapse. This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability, via conducting random finite-element analysis coupled with Monte–Carlo simulations. The results underscore that the face stability is strongly associated with the evolution of stress arch. The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering. In addition, non-uniform soils exhibit a lower stability factor than uniform soils, which implies that the latter likely yields an underestimated probability of face failure. The tunnel face is found to have a probability of failure more than 50% if the spatial non-uniformity of soil is ignored. In the end, a practical framework is established to determine factor of safety (FOS) corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils. The required FOS is 1.70 to limit the probability of face instability no more than 0.1%. Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure.