Vestnik KRAUNC: Fiziko-Matematičeskie Nauki (Mar 2024)
Математическая модель дробного нелинейного осциллятора Матье
Abstract
В работе проводится исследование дробного нелинейного осциллятора Матье методами численного анализа с целью установления его различных колебательных режимов. Дробный нелинейный осциллятор Матье представляет собой обыкновенное нелинейное дифференциальное уравнение с дробными производными в смысле Герасимова-Капуто и локальными начальными условиями (задача Коши). Дробные производные Герасимова-Капуто характеризуют наличие эффекта наследственности в колебательной системе. В такой системе текущее ее состояние зависит от предыстории. Для исследования задачи Коши был применен численный метод из семейства предиктор-корректор — метод Адамса-Башфорта-Мултона, алгоритм которого был реализован в системе компьютерной математики Matlab. С помощью численного алгоритма для различных значений параметров дробного нелинейного осциллятора Матье были построены осциллограммы и фазовые траектории. Показано, что в отсутствии внешнего периодического воздействия в рассматриваемой колебательной системе могут возникать автоколебания, которые на фазовой траектории характеризуется предельными циклами. Проведено исследование предельных циклов с помощью компьютерного моделирования. Показано, что также могут возникать апериодические режимы, т.е. режимы, не относящиеся к колебательным. Поэтому порядки дробных производных могут влиять колебательный режим нелиненого дробного осциллятора Матье: от колебаний с постоянной амплитудой до затухающих и исчезающих совсем.
Keywords