Journal of Veterinary Internal Medicine (May 2024)

Use of machine learning and Poincaré density grid in the diagnosis of sinus node dysfunction caused by sinoatrial conduction block in dogs

  • Wyatt Hutson Flanders,
  • N. Sydney Moïse,
  • Niels F. Otani

DOI
https://doi.org/10.1111/jvim.17071
Journal volume & issue
Vol. 38, no. 3
pp. 1305 – 1324

Abstract

Read online

Abstract Background Sinus node dysfunction because of abnormal impulse generation or sinoatrial conduction block causes bradycardia that can be difficult to differentiate from high parasympathetic/low sympathetic modulation (HP/LSM). Hypothesis Beat‐to‐beat relationships of sinus node dysfunction are quantifiably distinguishable by Poincaré plots, machine learning, and 3‐dimensional density grid analysis. Moreover, computer modeling establishes sinoatrial conduction block as a mechanism. Animals Three groups of dogs were studied with a diagnosis of: (1) balanced autonomic modulation (n = 26), (2) HP/LSM (n = 26), and (3) sinus node dysfunction (n = 21). Methods Heart rate parameters and Poincaré plot data were determined [median (25%‐75%)]. Recordings were randomly assigned to training or testing. Supervised machine learning of the training data was evaluated with the testing data. The computer model included impulse rate, exit block probability, and HP/LSM. Results Confusion matrices illustrated the effectiveness in diagnosing by both machine learning and Poincaré density grid. Sinus pauses >2 s differentiated (P < .0001) HP/LSM (2340; 583‐3947 s) from sinus node dysfunction (8503; 7078‐10 050 s), but average heart rate did not. The shortest linear intervals were longer with sinus node dysfunction (315; 278‐323 ms) vs HP/LSM (260; 251‐292 ms; P = .008), but the longest linear intervals were shorter with sinus node dysfunction (620; 565‐698 ms) vs HP/LSM (843; 799‐888 ms; P < .0001). Conclusions Number and duration of pauses, not heart rate, differentiated sinus node dysfunction from HP/LSM. Machine learning and Poincaré density grid can accurately identify sinus node dysfunction. Computer modeling supports sinoatrial conduction block as a mechanism of sinus node dysfunction.

Keywords