Acta Biochimica et Biophysica Sinica (Sep 2022)

A novel small positive allosteric modulator of neuropeptide receptor PAC1-R exerts neuroprotective effects in MPTP mouse Parkinson’s disease model

  • Fan Guangchun,
  • Chen Shang,
  • Tao Zhengxin,
  • Zhang Huahua,
  • Yu Rongjie

DOI
https://doi.org/10.3724/abbs.2022126
Journal volume & issue
Vol. 54
pp. 1349 – 1364

Abstract

Read online

As a neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP)-preferring receptor, PAC1-R mediates effective neuroprotective activity. Based on the finding that the antibiotic doxycycline (DOX) with clinical neuroprotective activity functions as a positive allosteric modulator (PAM) of neuropeptide PACAP receptor 1 (PAC1-R), we use virtual and laboratory screening to search for novel small molecule PAMs of PAC1-R. Virtual screening is carried out using a small-molecule library TargetMol. After two-level precision screening with Glide, the top five compounds with the best predicted affinities for PAC1-R are selected and named small positive allosteric modulator 1‒5 (SPAM1‒5). Our results show that only 4-{[4-(4-Oxo-3,4-2-yl)butanamido]methyl}benzoic acid (SPAM1) has stronger neuroprotective activity than DOX in the MPP+ PD cell model and MPTP PD mouse model. SPAM1 has a higher affinity for PAC1-R than DOX, but has no antibiotic activity. Moreover, both SPAM1 and DOX block the decrease of PAC1-R level in mouse brain tissues induced by MPTP. The successful screening of SPAM1 offers a novel drug for the treatment of neurodegenerative disease targeting the PAC1-R.

Keywords