Parasites & Vectors (Mar 2021)

Molecular and morphological characterization of three new species of avian Onchocercidae (Nematoda) with emphasis on circulating microfilariae

  • Rasa Binkienė,
  • Carolina Romeiro Fernandes Chagas,
  • Rasa Bernotienė,
  • Gediminas Valkiūnas

DOI
https://doi.org/10.1186/s13071-021-04614-8
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Blood parasites have been the subject of much research, with numerous reports of the presence of microfilariae in the peripheral blood (circulating microfilariae) of birds belonging to many orders. Current limitations in molecular characterization methods and species identification using morphological characters of circulating microfilariae are major obstacles to improving our understanding the biology of Filarioidea species, particularly in wildlife. The aim of this study was to partially fill these gaps, with particular emphasis on morphological features of microfilariae, which are the most readily accessible stages of these pathogens. Methods Peripheral blood samples of 206 birds belonging to genera Acrocephalus (five species) and Sylvia (five species) were examined using the buffy coat method to process the blood samples for the presence of microfilariae. Positive birds were dissected to collect adult nematodes. Microfilariae and adult nematodes were described, and sequences of their mitochondrial cytochrome c oxidase subunit I and nuclear 28S rDNA gene fragments were obtained and used for molecular characterization and Bayesian phylogenetic inferences. Results Overall prevalence of microfilariae was 2.9%. Microfilariae were found in the blood samples from six birds (2 Acrocephalus scirpaceus and 1 each of A. arundinaceus, Sylvia atricapilla, S. borin and S. curruca), which were dissected. All parasite species observed were new. Eufilaria acrocephalusi sp. n. and Eufilaria sylviae sp. n. were present in subcutaneous, peritracheal and periesophageal connective tissues in A. scirpaceus and S. borin, respectively. Splendidofilaria bartletti sp. n. was found in finger joins of S. atricapilla. Illustrations of microfilariae and adult nematodes are shown, and morphological and phylogenetic analyses identified the DNA barcode haplotypes that are associated with these species. Phylogenetic analysis places the parasites of different genera in different closely related clades. Conclusions Adult nematode morphological characters, which have been traditionally used in the taxonomy of Filarioidea species, have a phylogenetic value. Importantly, in our study parasites of different genera were readily distinguishable based on the morphology of their microfilariae. The link between molecular and morphology data requires more study in Filarioidea species research, particularly because this approach provides new knowledge on species identity using only readily accessible blood stages (microfilariae), thereby avoiding host dissection and thus minimizing harm to wildlife during research.

Keywords