Materials & Design (Nov 2020)

An asymmetric surface coating strategy for improved corrosion resistance and vascular compatibility of magnesium alloy stents

  • Min-Ho Kang,
  • Kwang-Hee Cheon,
  • Kyung-Il Jo,
  • Ji-Ho Ahn,
  • Hyoun-Ee Kim,
  • Hyun-Do Jung,
  • Tae-Sik Jang

Journal volume & issue
Vol. 196
p. 109182

Abstract

Read online

Magnesium (Mg) and its alloys are promising materials for biodegradable drug-eluting stent applications, but their rapid corrosion remains a major challenge for clinical practice. Considerable efforts have been made to develop an efficient surface coating that can provide higher Mg stent corrosion resistance, sustained drug-delivery capability, and vascular compatibility. Herein, we introduce poly(ether imide) (PEI) and poly(lactic-co-glycolic acid) (PLGA) as surface coating polymers for WE43 Mg-alloy stent. Using a sequential spray-coating method, we developed a novel asymmetric stent coating comprising an inner surface coated with a PEI single layer and outer/side surfaces coated with sirolimus-loaded PLGA/PEI double layers. PEI coating layer has excellent adhesiveness to WE43 surface and considerably improves WE43 corrosion resistance and in vitro endothelial cell compatibility. PLGA/PEI double coating layer ensures a low release rate of sirolimus and stable surface morphology during drug-release process. Only vascular smooth muscle cells are directly affected by sirolimus owing to the asymmetric geometry of PLGA/PEI double coating, which has a satisfactory anti-proliferation effect. These results indicate that the developed asymmetrically PEI- and PLGA/PEI-coated WE43 stents have significant potential for achieving enhanced re-endothelialization and suppressed in-stent restenosis in vascular stent applications.

Keywords