ISME Communications (Oct 2022)

Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature

  • Xiaoyan Jing,
  • Yanhai Gong,
  • Huihui Pan,
  • Yu Meng,
  • Yishang Ren,
  • Zhidian Diao,
  • Runzhi Mu,
  • Teng Xu,
  • Jia Zhang,
  • Yuetong Ji,
  • Yuandong Li,
  • Chen Wang,
  • Lingyun Qu,
  • Li Cui,
  • Bo Ma,
  • Jian Xu

DOI
https://doi.org/10.1038/s43705-022-00188-3
Journal volume & issue
Vol. 2, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Due to the challenges in detecting in situ activity and cultivating the not-yet-cultured, functional assessment and mining of living microbes from nature has typically followed a ‘culture-first’ paradigm. Here, employing phosphate-solubilizing microbes (PSM) as model, we introduce a ‘screen-first’ strategy that is underpinned by a precisely one-cell-resolution, complete workflow of single-cell Raman-activated Sorting and Cultivation (scRACS-Culture). Directly from domestic sewage, individual cells were screened for in-situ organic-phosphate-solubilizing activity via D2O intake rate, sorted by the function via Raman-activated Gravity-driven Encapsulation (RAGE), and then cultivated from precisely one cell. By scRACS-Culture, pure cultures of strong organic PSM including Comamonas spp., Acinetobacter spp., Enterobacter spp. and Citrobacter spp., were derived, whose phosphate-solubilizing activities in situ are 90–200% higher than in pure culture, underscoring the importance of ‘screen-first’ strategy. Moreover, employing scRACS-Seq for post-RACS cells that remain uncultured, we discovered a previously unknown, low-abundance, strong organic-PSM of Cutibacterium spp. that employs secretary metallophosphoesterase (MPP), cell-wall-anchored 5′-nucleotidase (encoded by ushA) and periplasmic-membrane located PstSCAB-PhoU transporter system for efficient solubilization and scavenging of extracellular phosphate in sewage. Therefore, scRACS-Culture and scRACS-Seq provide an in situ function-based, ‘screen-first’ approach for assessing and mining microbes directly from the environment.