Animal (Dec 2022)

Animal board invited review: Genomic-based improvement of cattle in response to climate change

  • I. Strandén,
  • J. Kantanen,
  • M.H. Lidauer,
  • T. Mehtiö,
  • E. Negussie

Journal volume & issue
Vol. 16, no. 12
p. 100673

Abstract

Read online

Climate change brings challenges to cattle production, such as the need to adapt to new climates and pressure to reduce greenhouse emissions (GHG). In general, the improvement of traits in current breeding goals is favourably correlated with the reduction of GHG. Current breeding goals and tools for increasing cattle production efficiency have reduced GHG. The same amount of production can be achieved by a much smaller number of animals. Genomic selection (GS) may offer a cost-effective way of using an efficient breeding approach, even in low- and middle-income countries. As climate change increases the intensity of heatwaves, adaptation to heat stress leads to lower efficiency of production and, thus, is unfavourable to the goal of reducing GHG. Furthermore, there is evidence that heat stress during cow pregnancy can have many generation-long lowering effects on milk production. Both adaptation and reduction of GHG are among the difficult-to-measure traits for which GS is more efficient and suitable than the traditional non-genomic breeding evaluation approach. Nevertheless, the commonly used within-breed selection may be insufficient to meet the new challenges; thus, cross-breeding based on selecting highly efficient and highly adaptive breeds may be needed. Genomic introgression offers an efficient approach for cross-breeding that is expected to provide high genetic progress with a low rate of inbreeding. However, well-adapted breeds may have a small number of animals, which is a source of concern from a genetic biodiversity point of view. Furthermore, low animal numbers also limit the efficiency of genomic introgression. Sustainable cattle production in countries that have already intensified production is likely to emphasise better health, reproduction, feed efficiency, heat stress and other adaptation traits instead of higher production. This may require the application of innovative technologies for phenotyping and further use of new big data techniques to extract information for breeding.

Keywords