Scientific Reports (Jan 2022)

Petrophysical core-based zonation of OW oilfield in the Bredasdorp Basin South Africa

  • Mimonitu Opuwari,
  • Blessing Afolayan,
  • Saeed Mohammed,
  • Paschal Ogechukwu Amaechi,
  • Youmssi Bareja,
  • Tapas Chatterjee

DOI
https://doi.org/10.1038/s41598-021-04447-6
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 19

Abstract

Read online

Abstract This study aims to generate rock units based on core permeability and porosity of OW oilfield in the Bredasdorp Basin offshore South Africa. In this study, we identified and classified lithofacies based on sedimentology reports in conjunction with well logs. Lucia's petrophysical classification method is used to classify rocks into three classes. Results revealed three lithofacies as A (sandstone, coarse to medium-grained), B (fine to medium-grained sandstone), and C (carbonaceous claystone, finely laminated with siltstone). Lithofacies A is the best reservoir quality and corresponds to class 1, while lithofacies B and C correspond to class 2 and 3, which are good and poor reservoir quality rock, respectively. An integrated reservoir zonation for the rocks is based on four different zonation methods (Flow Zone indicator (FZI), Winland r35, Hydraulic conductivity (HC), and Stratigraphy modified Lorenz plot (SMLP)). Four flow zones Reservoir rock types (RRTs) were identified as RRT1, RRT3, RRT4, and RRT5, respectively. The RRT5 is the best reservoir quality composed of a megaporous rock unit, with an average FZI value between 5 and 10 µm, and HC from 40 to 120 mD/v3, ranked as very good. The most prolific flow units (RRT5 and RRT4 zones) form more than 75% of each well's flow capacities are supplied by two flow units (FU1 and FU3). The RRT1 is the most reduced rock quality composed of impervious and nanoporous rock. Quartz is the dominant framework grain, and siderite is the dominant cement that affects flow zones. This study has demonstrated a robust approach to delineate flow units in the OW oilfield. We have developed a useful regional petrophysical reservoir rock flow zonation model for clastic reservoir sediments. This study has produced, for the first time, insights into the petrophysical properties of the OW oilfield from the Bredasdorp Basin South Africa, based on integration of core and mineralogy data. A novel sandstone reservoir zonation classification criteria developed from this study can be applied to other datasets of sandstone reservoirs with confidence.