Nanophotonics (Jan 2022)

Multi-freedom metasurface empowered vectorial holography

  • Deng Zi-Lan,
  • Wang Zhi-Qiang,
  • Li Feng-Jun,
  • Hu Meng-Xia,
  • Li Xiangping

DOI
https://doi.org/10.1515/nanoph-2021-0662
Journal volume & issue
Vol. 11, no. 9
pp. 1725 – 1739

Abstract

Read online

Optical holography capable of the complete recording and reconstruction of light’s wavefront, plays significant roles on interferometry, microscopy, imaging, data storage, and three-dimensional displaying. Conventional holography treats light as scalar field with only phase and intensity dimensions, leaving the polarization information entirely neglected. Benefiting from the multiple degrees of freedom (DOFs) for optical field manipulation provided by the metasurface, vectorial holography with further versatile control in both polarization states and spatial distributions, greatly extended the scope of holography. As full vectorial nature of light field has been considered, the information carried out by light has dramatically increased, promising for novel photonic applications with high performance and multifarious functionalities. This review will focus on recent advances on vectorial holography empowered by multiple DOFs metasurfaces. Interleaved multi-atom approach is first introduced to construct vectorial holograms with spatially discrete polarization distributions, followed by the versatile vectorial holograms with continuous polarizations that are designed usually by modified iterative algorithms. We next discuss advances with further spectral response, leading to vivid full-color vectorial holography; and the combination between the far-field vectorial wavefront shaping enabled by vectorial holography and the near-field nano-printing functionalities by further exploiting local polarization and structure color responses of the meta-atom. The development of vectorial holography provides new avenues for compact multi-functional photonic devices, potentially useful in optical encryption, anticounterfeiting, and data storage applications.

Keywords