Journal of Orthopaedic Translation (Jul 2024)

Augmentation of functional recovery via ROCK/PI3K/AKT pathway by Fasudil Hydrochloride in a rat sciatic nerve transection model

  • Hai Wang,
  • Fang Fang,
  • Xing jing,
  • Dan Xu,
  • Zhenyu Ren,
  • Shuang Dou,
  • Yun Xie,
  • Yuehong Zhuang

Journal volume & issue
Vol. 47
pp. 74 – 86

Abstract

Read online

Backgrounds: The functional recovery after peripheral nerve injury remains unsatisfactory. This study aims to perform a comprehensive evaluation of the efficacy of Fasudil Hydrochloride at treating the sciatic nerve transection injury in rats and the mechanism involved. Materials and methods: In animal experiments, 75 Sprague Dawley rats that underwent transection and repair of the right sciatic nerve were divided into a control, Fasudil, and Fas + LY group, receiving daily intraperitoneal injection of saline, Fasudil Hydrochloride (10 mg/kg), and Fasudil Hydrochloride plus LY294002 (5 mg/kg), respectively. At day 3 after surgery, the expression of ROCK2, p-PI3K, and p-AKT in L4-5 DRG and the lumbosacral enlargement was determined using Western blotting. At day 7 and 14, axon density in the distal stump was evaluated with immunostaining using the anti-Neurofilament-200 antibody. At day 30, retrograde tracing by injecting Fluoro-gold in the distal stump was performed. Three months after surgery, remyelination was analyzed with immostaining using the anti-MPZ antibody and the transmission electron microscope; Moreover, Motion-Evoked Potential, and recovery of sensorimotor functions was evaluated with a neuromonitor, Footprint, Hot Plate and Von Frey Filaments, respectively. Moveover, the Gastrocnemius muscles were weighed, and then underwent H&E staining, and staining of the neuromuscular junction using α-Bungarotoxin to evaluate the extent of atrophy and degeneration of the endplates in the Gastrocnemius. In vitro, spinal motor neurons (SMNs) and dorsal root ganglia (DRG) were cultured to examine the impact of Fasudil Hydrochloride and LY294002 on the axon outgrowth. Results: Three days after injury, the expression of ROCK2 increased significantly (P<0.01), and Fasudil application significantly increased the expression of p-PI3K and p-AKT in L4-6 DRG and the lumbosacral enlargement (P < 0.05). At day 7 and 14 after surgery, a higher axon density could be observed in the Fasudil group(P < 0.05). At day 30 after surgery, a larger number of motor and sensory neurons absorbing Fluoro-gold could be observed in the Fasudil group (P < 0.01) Three months after surgery, a greater thickness of myelin sheath could be observed in the Fasudil group (P < 0.05). The electrophysiological test showed that a larger amplitude of motion-evoked potential could be triggered in the Fasudil group (P < 0.01). Behavioral tests showed that a higher sciatic function index and a lower threshold for reacting to heat and mechanical stimuli could be measured in the Fasudil group. (P < 0.01). The wet weight ratio of the Gastrocnemius muscles and the area of the cross section of its myofibrils were greater in the Fasudil group (P < 0.01), which also demonstrated a higer ratio of axon-endplate connection and a larger size of endplates (P < 0.05). And there were no significant differences for the abovementioned parameters between the control and Fas + LY groups (P>0.05). In vitro studies showed that Fasudil could significantly promote axon growth in DRG and SMNs, and increase the expression of p-PI3K and p-AKT, which could be abolished by LY294002 (P < 0.05). Conclusions: Fasudil can augment axon regeneration and remyelination, and functional recovery after sciatic nerve injury by activating the PI3K/AKT pathway. The translational potential of this article: The translation potential of this article is that we report for the first time that Fasudil Hydrochloride has a remarkable efficacy at improving axon regeneration and remyelination following a transection injury of the right sciatic nerve in rats through the ROCK/PI3K/AKT pathway, which has a translational potential to be used clinically to treat peripheral nerve injury.

Keywords