Cell Reports (Mar 2019)
Enhanced Renewal of Erythroid Progenitors in Myelodysplastic Anemia by Peripheral Serotonin
Abstract
Summary: Tryptophan as the precursor of several active compounds, including kynurenine and serotonin, is critical for numerous important metabolic functions. Enhanced tryptophan metabolism toward the kynurenine pathway has been associated with myelodysplastic syndromes (MDSs), which are preleukemic clonal diseases characterized by dysplastic bone marrow and cytopenias. Here, we reveal a fundamental role for tryptophan metabolized along the serotonin pathway in normal erythropoiesis and in the physiopathology of MDS-related anemia. We identify, both in human and murine erythroid progenitors, a functional cell-autonomous serotonergic network with pro-survival and proliferative functions. In vivo studies demonstrate that pharmacological increase of serotonin levels using fluoxetine, a common antidepressant, has the potential to become an important therapeutic strategy in low-risk MDS anemia refractory to erythropoietin. : Sibon et al. identify a cell-autonomous serotonergic network in human and mouse erythroid progenitors. Reduced levels of serotonin lead to decreased proliferation and survival of erythroid progenitors. Increasing serotonin’s concentration through fluoxetine, commonly used to treat depression, could be a valuable therapeutic intervention to correct myelodysplastic-syndrome-related anemia. Keywords: serotonin, Tph1, erythropoiesis, myelodysplastic syndrome, anemia, SSRI