Parasites & Vectors (Sep 2022)

Glutathione metabolism in Cryptocaryon irritans involved in defense against oxidative stress induced by zinc ions

  • Zhi-Hong Zhong,
  • Zhi-Cheng Li,
  • Han Li,
  • Qing-Kai Guo,
  • Chen-Xi Wang,
  • Ji-Zhen Cao,
  • An-Xing Li

DOI
https://doi.org/10.1186/s13071-022-05390-9
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background Cryptocaryon irritans is a fatal parasite for marine teleosts and causes severe economic loss for aquaculture. Galvanized materials have shown efficacy in controlling this parasite infestation through the release of zinc ions to induce oxidative stress. Methods In this study, the resistance mechanism in C. irritans against oxidative stress induced by zinc ions was investigated. Untargeted metabolomics analysis was used to determine metabolic regulation in C. irritans in response to zinc ion treatment by the immersion of protomonts in ZnSO4 solution at a sublethal dose (20 μmol). Eight differential metabolites were selected to assess the efficacy of defense against zinc ion stimulation in protomonts of C. irritans. Furthermore, the mRNA relative levels of glutathione metabolism-associated enzymes were measured in protomonts following treatment with ZnSO4 solution at sublethal dose. Results The results showed that zinc ion exposure disrupted amino acid metabolism, carbohydrate metabolism, lipid metabolism, and nucleotide metabolism in C. irritans. Four antioxidants, namely ascorbate, S-hexyl-glutathione, syringic acid, and ubiquinone-1, were significantly increased in the Zn group (P < 0.01), while the glutathione metabolism pathway was enhanced. The encystment rate of C. irritans was significantly higher in the ascorbate and methionine treatment (P < 0.05) groups. Additionally, at 24 h post-zinc ion exposure, the relative mRNA level of glutathione reductase (GR) was increased significantly (P < 0.01). On the contrary, the relative mRNA levels of glutathione S-transferase (GT) and phospholipid-hydroperoxide glutathione peroxidase (GPx) were significantly decreased (P < 0.05), thus indicating that the generation of reduced glutathione was enhanced. Conclusions These results revealed that glutathione metabolism in C. irritans contributes to oxidative stress resistance from zinc ions, and could be a potential drug target for controlling C. irritans infection. Graphical Abstract

Keywords