Antioxidants (Nov 2022)

Sex-Dependent Responses to Maternal Exposure to PM<sub>2.5</sub> in the Offspring

  • Hui Chen,
  • David Van Reyk,
  • Annabel Oliveira,
  • Yik Lung Chan,
  • Stephanie EL Town,
  • Benjamin Rayner,
  • Carol A Pollock,
  • Sonia Saad,
  • Jacob George,
  • Matthew P Padula,
  • Brian G Oliver

DOI
https://doi.org/10.3390/antiox11112255
Journal volume & issue
Vol. 11, no. 11
p. 2255

Abstract

Read online

Objective: Particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) can cross the blood-placental barrier causing adverse foetal outcomes. However, the impact of maternal exposure to low-levels of PM2.5 on liver health and the metabolic profile is unclear. This study aimed to investigate hepatic responses to long-term gestational low-dose PM2.5 exposure, and whether the removal of PM after conception can prevent such effects. Method: Female Balb/c mice (8 weeks) were exposed to PM2.5 (5 μg/day) for 6 weeks prior to mating, during gestation and lactation to model living in a polluted environment (PM group). In a sub-group, PM2.5 exposure was stopped post-conception to model mothers moving to areas with clean air (pre-gestation, Pre) group. Livers were studied in 13-week old offspring. Results: Female offspring in both PM and Pre groups had increased liver triglyceride and glycogen levels, glucose intolerance, but reduced serum insulin and insulin resistance. Male offspring from only the Pre group had increased liver and serum triglycerides, increased liver glycogen, glucose intolerance and higher fasting glucose level. Markers of oxidative stress and inflammation were increased in females from PM and Pre groups. There was also a significant sex difference in the hepatic response to PM2.5 with differential changes in several metabolic markers identified by proteomic analysis. Conclusions: Maternal PM exposure exerted sex-dependent effects on liver health with more severe impacts on females. The removal of PM2.5 during gestation provided limited protection in the offspring’s metabolism regardless of sex.

Keywords