Energies (Nov 2024)
Energy Solutions for Decarbonization of Industrial Heat Processes
Abstract
The global rise in population and advancement in civilization have led to a substantial increase in energy demand, particularly in the industrial sector. This sector accounts for a considerable proportion of total energy consumption, with approximately three-quarters of its energy consumption being used for heat processes. To meet the Paris Agreement goals, countries are aligning policies with international agreements, and companies are setting net-zero targets. Upstream emissions of the Scope 3 category refer to activities in the company’s supply chain, being crucial for achieving its net-zero ambitions. This study analyzes heating solutions for the supply chain of certain globally operating companies, contributing to their 2030 carbon-neutral ambition. The objective is to identify current and emerging heating solutions from carbon dioxide equivalent (CO2e) impact, economic, and technical perspectives, considering regional aspects. The methodology includes qualitative and quantitative surveys to identify heating solutions and gather regional CO2e emission factors and energy prices. Calculations estimate the CO2e emissions and energy costs for each technology or fuel, considering each solution’s efficiency. The study focuses on Europe, the United States, Brazil, China, and Saudi Arabia, regions or countries representative of companies’ global supply chain setups. Results indicate that heat pumps are the optimal solution for low temperatures, while biomass is the second most prevalent solution, except in Saudi Arabia where natural gas is more feasible. For medium and high temperatures, natural gas is viable in the short term for Saudi Arabia and China, while biomass and electrification are beneficial for other regions. The proportion of electricity in the energy mix is expected to increase, but achieving decarbonization targets requires cleaner energy mixes or competitive Power Purchase Agreement (PPA) projects. Brazil, with its high proportion of renewable energy sources, offers favorable conditions for using green electricity to reduce emissions. The utilization of biomethane is promising if costs and incentives align with those in the EU. Although not the objective of this study, a comprehensive analysis of CAPEX and lifecycle costs associated with equipment is necessary when migrating technologies. Policies and economic incentives can also make these solutions more or less favorable.
Keywords