iForest - Biogeosciences and Forestry (Oct 2021)
Using nano-scale Fe0 particles and organic waste to improve the nutritional status of tree seedlings growing in heavy metal-contaminated soil
Abstract
The rehabilitation of heavy metal-contaminated lands is a challenging issue worldwide. The application of effective eco-friendly techniques and materials is necessary for amending the contaminated soils, and the in-situ results should be examined. The present study investigated the effect of zero-valent iron-nanoparticles (Fe0-NPs) and cellulosic wastes (CW) on the lead (Pb) and cadmium (Cd) uptake and nutrients’ (N, P, K) concentration of maple seedlings in contaminated soil. First, one-year-old seedlings were planted in pots containing unpolluted soil (volume = 3 Kg), and then the soil was contaminated by adding Pb (0, Pb100, Pb200, and Pb300 mg kg-1) and Cd (0, Cd10, Cd20, and Cd30 mg kg-1) solutions. The CW (0, 10, 20, 30 g/100g soil) and Fe0-NPs (0, 1, 2, 3 mg kg-1) treatments were applied to the soil before and after Pb and Cd addition, respectively. The biomass of seedlings and the concentration of nitrogen, potassium, and phosphorus in leaves were measured. Leaves, stems, and roots were digested to measure the Pb and Cd concentrations. Results showed that CW and Fe0-NPs improved N, P, and K concentrations in leaves at all levels of contamination. The lowest concentration of Pb and Cd in all organs and treatments was observed in the highest level of Fe0-NPs. The cellulosic waste and Fe0-NPs (the highest level only) significantly increased the soil pH at all levels of contamination. Our findings suggested that the use of Fe0-NPs (3 mg kg-1) and CW (30g/100g soil) could be appropriate for reducing the bioavailability of Pb and Cd in contaminated soil and improving the growth of maple seedlings.
Keywords