Particles (Sep 2022)

Electron Capture on Nuclei in Stellar Environment

  • Panagiota Giannaka,
  • Theocharis Kosmas

DOI
https://doi.org/10.3390/particles5030030
Journal volume & issue
Vol. 5, no. 3
pp. 377 – 389

Abstract

Read online

The stellar electron capture on nuclei is an essential, semi-leptonic process that is especially significant in the central environment of core-collapse supernovae and in the explosive stellar nucleosynthesis. In this article, on the basis of the original (absolute) electron-capture cross-sections under laboratory conditions that we computed in our previous work for a set of medium-weight nuclear isotopes, we extend this study and evaluate folded e−-capture rates in the stellar environment. With this aim, we assume that the parent nuclei and the projectile electrons interact when they are in the deep stellar interior during the late stages of the evolution of massive stars. Under these conditions (high matter densities and high temperatures of the pre-supernova and core-collapse supernova phases), we choose two categories of nuclei; the first includes the 48Ti and 56Fe isotopes that have A65 and belong to the iron group of nuclei, and the second includes the heavier and more neutron-rich isotopes 66Zn and 90Zr (with A>65). In the former, the electron capture takes place mostly during the pre-supernova stage, while the latter occurs during the core-collapse supernova phase. A comparison with previous calculations, which were obtained by using various microscopic nuclear models employed for single-charge exchange nuclear reactions, is also included.

Keywords