BMC Microbiology (Sep 2008)
Allele distribution and genetic diversity of VNTR loci in <it>Salmonella enterica </it>serotype Enteritidis isolates from different sources
Abstract
Abstract Background Salmonella enterica serotype Enteritidis (S. Enteritidis) is a zoonotic pathogen, which can be found in many sources including animals and the environment. However, little is known about the molecular relatedness among S. Enteritidis isolates from different sources. We have applied multiple-locus variable number tandem repeat analysis (MLVA) to study the genetic diversity of S. Enteritidis isolates from human and non-human sources. Results We identified 38 unique MLVA types using nine VNTR loci markers for discrimination between 145 S. Enteritidis isolates from different sources including humans (n = 41), chickens (n = 45), and eggs (n = 40). There were 20 distinct MLVA types identified from human isolates, 17 distinct MLVA types from chicken isolates, and 5 from egg isolates. We compared allele distribution and frequency for each VNTR marker and measured allelic polymorphism within each VNTR locus of S. Enteritidis isolates from the sources using Nei's diversity index (D). Differences in allele distribution and frequency were detected in most loci of study isolates. Different genetic diversity for certain loci was identified in isolates from different sources. The average of genetic diversity (D) was lower in egg isolates (0.16) compared to human (0.41) and chicken (0.30). However, for loci SE3, SE7, and SE9, human isolates showed significantly higher diversity than both chicken and egg isolates. Whereas for loci SE5 and SE10, chicken isolates had significantly higher diversity than both human and egg isolates. Minimum-spanning tree (MST) comprised one major cluster, a minor cluster, and four clonal expansions. MLVA application enabled a cluster analysis by the MST of the S. Enteritidis isolates by sources, which allows a great insight into the genetic relatedness and the possible flow of these organisms between different reservoirs and humans. Conclusion Differences in allele distribution and genetic diversity of VNTR loci in S. Enteritidis isolates from different sources were found. Polymorphism in most of the VNTR loci was more frequent among human S. Enteritidis isolates than isolates from chickens or eggs. Therefore, VNTR profiles of S. Enteritidis isolates from a specific source should be further evaluated as potential markers in epidemiologic investigations to trace S. Enteritidis to their probable source.