Environment Conservation Journal (Jan 2023)

Impact of soil temperature, pH and carbon dioxide on the population and efficiency of fluorescent pseudomonad in the rhizosphere soil of Pokkali rice

  • Surendra Gopal,
  • Reshma Francis,
  • A K Sreelatha

DOI
https://doi.org/10.36953/ECJ.10262239
Journal volume & issue
Vol. 24, no. 1

Abstract

Read online

The present study was aimed at the evaluation of soil temperature, pH and carbon dioxide evolution on the number and efficiency of fluorescent pseudomonads around the root system of Pokkali rice at Vytilla in Ernakulam district of Kerala. Two plots (40 m2) comprising control (without application of Pseudomonas fluorescens) and P. fluorescens treated plants were used for the field experiment. The isolates of fluorescent Pseudomonads or Pseudomonas fluorescence were counted and their efficiency was assessed for IAA, ammonia, HCN and siderophore production. Simultaneously, soil temperature, pH, and carbon dioxide evolution were also recorded. A total of 6 fluorescent pseudomonads (VPJU, VPJL, VPAU1, VPAU2, VPAU3 and VPAU4) were found during the crop period. All the isolates produced IAA and ammonia with varying degrees of intensity. Three isolates (VPAU1, VPAU3 and VPAU4) produced HCN, and no microbial isolates produced siderophore. The effect of soil temperature, pH, EC and carbon dioxide evolution was correlated with the number of fluorescent pseudomonads in the soil. The bacteria were significantly afflicted by pH and EC, whereas soil temperature and CO2 evolution did not show any effect on the number of fluorescent pseudomonads. There was no significant influence of soil temperature, pH, EC and carbon dioxide evolution on indole acetic acid production, ammonia, and HCN production. Inoculated Pseudomonas fluorescence did not survive in Pokkali rice fields. However, further studies are needed for at least three seasons in Pokkali soils to confirm the results of the present study.

Keywords