Nature Communications (Jul 2024)
Direct synthesis of partially ethoxylated branched polyethylenimine from ethanolamine
Abstract
Abstract We report here a method to make a branched and partially ethoxylated polyethyleneimine derivative directly from ethanolamine. The polymerization reaction is catalysed by a pincer complex of Earth-abundant metal, manganese, and produces water as the only byproduct. Industrial processes to produce polyethyleneimines involve the transformation of ethanolamine to a highly toxic chemical, aziridine, by an energy-intensive/waste-generating process followed by the ring-opening polymerization of aziridine. The reported method bypasses the need to produce a highly toxic intermediate and presents advantages over the current state-of-the-art. We propose that the polymerization process follows a hydrogen borrowing pathway that involves (a) dehydrogenation of ethanolamine to form 2-aminoacetaldehyde, (b) dehydrative coupling of 2-aminoacetaldehyde with ethanolamine to form an imine derivative, and (c) subsequent hydrogenation of imine derivative to form alkylated amines.