International Journal of Prognostics and Health Management (Jan 2018)
Diagnosing and PredictingWind Turbine Faults from SCADA Data Using Support Vector Machines
Abstract
Unscheduled or reactive maintenance on wind turbines due to component failure incurs significant downtime and, in turn, loss of revenue. To this end, it is important to be able to perform maintenance before it’s needed. To date, a strong effort has been applied to developing Condition Monitoring Systems (CMSs) which rely on retrofitting expensive vibration or oil analysis sensors to the turbine. Instead, by performing complex analysis of existing data from the turbine’s Supervisory Control and Data Acquisition (SCADA) system, valuable insights into turbine performance can be obtained at a much lower cost. In this paper, fault and alarm data from a turbine on the Southern coast of Ireland is analysed to identify periods of nominal and faulty operation. Classification techniques are then applied to detect and diagnose faults by taking into account other SCADA data such as temperature, pitch and rotor data. This is then extended to allow prediction and diagnosis in advance of specific faults. Results are provided which show recall scores generally above 80% for fault detection and diagnosis, and prediction up to 24 hours in advance of specific faults, representing significant improvement over previous techniques.
Keywords